

FGP20B thru FGP20D

Vishay General Semiconductor

Glass Passivated Ultrafast Rectifier

* Glass encapsulation technique is covered by Patent No. 3,996,602, brazed-lead assembly to Patent No. 3,930,306

DO-204AC (DO-15)

PRIMARY CHARACTERISTICS					
I _{F(AV)}	2.0 A				
V_{RRM}	100 V to 200 V				
I _{FSM}	50 A				
t _{rr}	35 ns				
V_{F}	0.95 V				
I _R	2.0 μΑ				
T _J max.	175 °C				

FEATURES

- · Cavity-free glass-passivated junction
- Ultrafast reverse recovery time
- · Low forward voltage drop
- Low leakage current
- · Low switching losses, high efficiency
- · High forward surge capability
- Meets environmental standard MIL-S-19500
- Solder dip 275 °C max. 10 s, per JESD 22-B106
- AEC-Q101 qualified
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in high frequency rectification and freewheeling application in switching mode converters and inverters for consumer, computer, automotive and telecommunication.

MECHANICAL DATA

Case: DO-204AC, molded epoxy over glass body Molding compound meets UL 94 V-0 flammability rating Base P/N-E3 - RoHS compliant, commercial grade Base P/NHE3 - RoHS compliant, AEC-Q101 qualified

Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

E3 suffix meets JESD 201 class 1A whisker test, HE3 suffix meets JESD 201 class 2 whisker test

Polarity: Color band denotes cathode end

MAXIMUM RATINGS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	FGP20B	FGP20C	FGP20D	UNIT	
Maximum repetitive peak reverse voltage	V_{RRM}	100	150	200	V	
Maximum RMS voltage	V_{RMS}	70	105	140	V	
Maximum DC blocking voltage	V_{DC}	100	150	200	V	
Maximum average forward rectified current 0.375" (9.5 mm) lead length at $T_L = 75\ ^{\circ}\text{C}$	I _{F(AV)}	2.0			А	
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load	I _{FSM}	50			А	
Operating junction and storage temperature range	T _J , T _{STG}	- 65 to + 175			°C	

FGP20B thru FGP20D

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)							
PARAMETER	TEST CONDITIONS		SYMBOL	FGP20B	FGP20C	FGP20D	UNIT
Maximum instantaneous forward voltage	2.0 A		V_{F}	0.95			V
Maximum DC reverse current at rated DC blocking voltage		T _A = 25 °C	I-	2.0		μA	
	T _A = 100 °C	50			μΛ		
Maximum reverse recovery time	I _F = 0.5 A, I _R = 1.0 A, I _{rr} = 0.25 A		t _{rr}	35			ns
Typical junction capacitance	4.0 V, 1 MHz		C _J 45			pF	

THERMAL CHARACTERISTICS (T _A = 25 °C unless otherwise noted)						
PARAMETER	SYMBOL	FGP20B FGP20C FGP20D		UNIT		
Typical they mal reciptance	R _{0JA} (1)	60			°C/W	
Typical thermal resistance	R ₀ JL (2)		20		C/VV	

Notes

- (1) Thermal resistance from junction to ambient 0.375" (9.5 mm) lead length mounted on P.C.B. with 0.47" x 0.47" (12 mm x 12 mm) copper pads
- (2) Thermal resistance from junction to lead at 0.375" (9.5 mm) lead length with both leads attached to heatsinks

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
FGP20D-E3/54	0.424	54	4000	13" diameter paper tape and reel		
FGP20D-E3/73	0.424	73	2000	Ammo pack packaging		
FGP20DHE3/54 ⁽¹⁾	0.424	54	4000	13" diameter paper tape and reel		
FGP20DHE3/73 ⁽¹⁾	0.424	73	2000	Ammo pack packaging		

Note

RATINGS AND CHARACTERISTICS CURVES

(T_A = 25 °C unless otherwise noted)

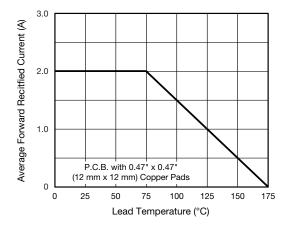


Fig. 1 - Maximum Forward Current Derating Curve

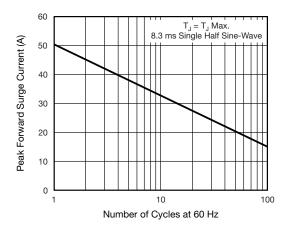


Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current

⁽¹⁾ AEC-Q101 qualified

Vishay General Semiconductor

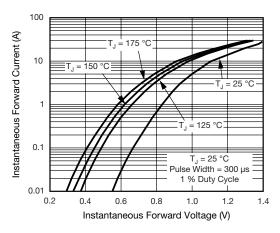


Fig. 3 - Typical Instantaneous Forward Characteristics

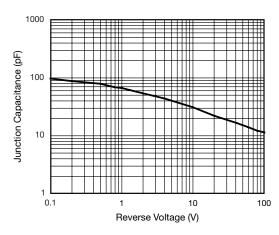


Fig. 5 - Typical Junction Capacitance

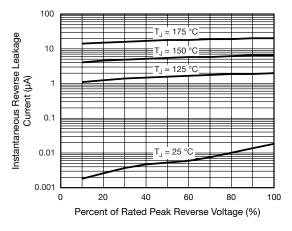
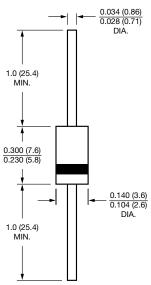



Fig. 4 - Typical Reverse Leakage Characteristics

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

DO-204AC (DO-15)

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

www.vishay.com